3. Generating code#
3.1. Generating a function#
Ultimately, the goal of the wrenfold framework is to provide a quicker path from expressive symbolic math to usable code. To generate a function, the first step is to create a python function that performs the necessary math. We will start by implementing something simple - the smoothstep function [1]:
Initially we will assume the input variable \(x\) is already in the domain [0, 1]
:
from wrenfold import sym
from wrenfold import type_annotations
def step(x: type_annotations.FloatScalar):
"""The smoothstep polynomial."""
return 3 * sym.pow(x, 2) - 2 * sym.pow(x, 3)
Note the presence of the type annotation on argument x
. This is important, as it communicates
type information required to create a function signature. In actuality, FloatScalar
is just
a scalar-valued expression of type wrenfold.sym.Expr
.
Note
The type annotations module contains a number of pre-declared types that can be used to annotate functions. For vector/matrix types, the user can always declare their own by following the pattern in type_annotations.py.
Next, we can code-generate the equivalent C++:
from wrenfold import code_generation
cpp = code_generation.generate_function(func=step, generator=code_generation.CppGenerator())
print(cpp)
template <typename Scalar>
Scalar step(const Scalar x)
{
// ...
const Scalar v001 = x;
return v001 * v001 * (static_cast<Scalar>(3) + -(v001 * static_cast<Scalar>(2)));
}
Or Rust:
rust = code_generation.generate_function(func=step, generator=code_generation.RustGenerator())
print(rust)
#[inline]
#[allow(non_snake_case, clippy::unused_unit, clippy::collapsible_else_if,
clippy::needless_late_init, unused_variables)]
pub fn step<>(x: f64) -> f64
{
// ...
let v001: f64 = x;
v001 * v001 * ((3i64) as f64 + -(v001 * (2i64) as f64))
}
3.2. Output arguments#
Let’s improve our generated function by adding the first and second derivatives as an optional output argument:
def step_deriv(x: type_annotations.FloatScalar):
"""The smoothstep polynomial."""
f = 3 * sym.pow(x, 2) - 2 * sym.pow(x, 3)
# Place the first and second derivative into a 2x1 vector:
df = sym.vector(f.diff(x), f.diff(x, 2))
# Because we are now producing multiple outputs, we need to indicate which one is the
# return value, and which should be an output argument:
return [
code_generation.ReturnValue(f),
code_generation.OutputArg(df, name="df", is_optional=True)
]
cpp = code_generation.generate_function(func=step_deriv, generator=code_generation.CppGenerator())
print(cpp)
The key distinction here is that our symbolic function now returns a sequence of
wrenfold.code_generation.ReturnValue
and wrenfold.code_generation.OutputArg
objects. Presently, wrenfold only supports one return value (but many output arguments).
We make the df
argument optional by passing is_optional=True
to OutputArg
on
construction. The resulting function will then only compute values required for df
when the
argument is present. The C++ code looks like:
template <typename Scalar, typename T1>
Scalar step_deriv(const Scalar x, T1&& df)
{
auto _df = wf::make_optional_output_span<2, 1>(df);
// ...
const Scalar v001 = x;
const Scalar v034 = -v001;
if (static_cast<bool>(_df)) {
_df(0, 0) = v001 * static_cast<Scalar>(6) * (static_cast<Scalar>(1) + v034);
_df(1, 0) = static_cast<Scalar>(6) + static_cast<Scalar>(12) * v034;
}
return v001 * v001 * (static_cast<Scalar>(3) + static_cast<Scalar>(2) * v034);
}
3.3. Conditional logic#
Lastly, let’s extend our function to automatically clamp the value of x
to the valid interval.
We do this by adding calls to wrenfold.sym.min()
and wrenfold.sym.max()
- both of which
are shorthand for sym.where
:
def step_clamped(x: type_annotations.FloatScalar):
"""The clamped smoothstep polynomial."""
# First express the polynomials in terms of `xv`.
xv = sym.symbols('xv', real=True)
f = 3 * sym.pow(xv, 2) - 2 * sym.pow(xv, 3)
df = sym.vector(f.diff(xv), f.diff(xv, 2))
# Replace `xv` with the clamped argument. By doing things in this order we get a neater
# result (since we don't need to differentiate the clamping).
x_clamped = sym.min(sym.max(x, 0), 1)
f = f.subs(xv, x_clamped)
df = df.subs(xv, x_clamped)
return [
code_generation.ReturnValue(f),
code_generation.OutputArg(df, name="df", is_optional=True)
]
The output code (truncated here) now includes the clamping logic as well:
template <typename Scalar, typename T1>
Scalar step_clamped(const Scalar x, T1&& df)
{
auto _df = wf::make_optional_output_span<2, 1>(df);
const Scalar v002 = x;
Scalar v006;
if (v002 < static_cast<Scalar>(0)) {
v006 = static_cast<Scalar>(0);
} else {
v006 = v002;
}
Scalar v009;
if (static_cast<Scalar>(1) < v006) {
v009 = static_cast<Scalar>(1);
} else {
v009 = v006;
}
// ... the remainder of the function is effectively unchanged.
}
3.4. Inspecting the AST#
When wrenfold.code_generation.generate_function()
is called, three separate steps occur:
The signature of the symbolic function is inspected to determine the input types. Variable inputs are constructed, and the function is invoked. The symbolic expression tree is captured in a
wrenfold.code_generation.FunctionDescription
object.The symbolic expressions are flattened into a simple intermediate representation (IR), and common sub-expressions are eliminated. This representation is then converted into an abstract syntax tree (AST).
The syntax tree is emitted in a particular language (C++ for example).
If desired (perhaps while debugging), we can perform these steps separately. First, we create
the FunctionDescription
:
from wrenfold import code_generation
desc = code_generation.create_function_description(func=step)
print(desc) # prints: FunctionDescription('step', 1 args)
We can then convert it to syntax by calling wrenfold.code_generation.transpile()
:
definition = code_generation.transpile(desc)
print(definition) # prints: FunctionDefinition('step', <1 arguments>, <8 elements>)
wrenfold.ast.FunctionDefinition
is the root of the abstract syntax tree. We can directly
inspect its contents:
>>> definition.signature.name
'step'
>>> definition.signature.arguments
[Argument(x: floating_point)]
>>> definition.body[1]
Declaration(v001: floating_point = GetArgument(x))
>>> definition.body[2]
Declaration(v002: floating_point = Multiply(VariableRef(v001), VariableRef(v001)))
In most cases this will not be necessary. Instead, We can pass the AST directly to a generator to obtain code:
generator = code_generation.CppGenerator()
cpp = generator.generate(definition)
print(cpp)
template <typename Scalar>
Scalar step(const Scalar x)
{
// ...
const Scalar v001 = x;
return v001 * v001 * (static_cast<Scalar>(3) + -(v001 * static_cast<Scalar>(2)));
}
Footnotes