sym#

wrenfold.sym.abs(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The absolute value function \(\lvert x \rvert\).

Examples

>>> sym.abs(3)
3
>>> x = sym.symbols('x')
>>> sym.abs(x)
abs(x)
>>> sym.abs(x).diff(x)
x/abs(x)
wrenfold.sym.acos(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The inverse cosine function \(\cos^{-1}{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.acos(x)
acos(x)
>>> sym.acos(0)
pi/2
wrenfold.sym.acosh(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The inverse hyperbolic cosine function \(\cosh^{-1}{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.acosh(x)
acosh(x)
wrenfold.sym.addition(args: List[wrenfold.sym.Expr]) wrenfold.sym.Expr#

Construct addition expression from provided operands.

wrenfold.sym.asin(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The inverse sine function \(\sin^{-1}{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.asin(x)
asin(x)
>>> sym.asin(-1)
-pi/2
wrenfold.sym.asinh(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The inverse hyperbolic sine function \(\sinh^{-1}{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.asinh(x)
asinh(x)
wrenfold.sym.atan(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The inverse tangent function \(\tan^{-1}{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.atan(x)
atan(x)
>>> sym.atan(-x)
-atan(x)
wrenfold.sym.atan2(y: wrenfold.sym.Expr, x: wrenfold.sym.Expr) wrenfold.sym.Expr#

Two-argument inverse tangent function \(\text{atan2}\left(y, x\right)\). Returns the angle \(\theta \in [-\pi, \pi]\) such that:

\[\begin{split}\begin{align} x &= \sqrt{x^2 + y^2}\cdot\cos\theta \\ y &= \sqrt{x^2 + y^2}\cdot\sin\theta \end{align}\end{split}\]

Examples

>>> sym.atan2(1, 0)
pi/2
>>> x, y = sym.symbols('x, y')
>>> sym.atan2(y, x).diff(x)
-y/(x**2 + y**2)
wrenfold.sym.atanh(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The inverse hyperbolic tangent function \(\tanh^{-1}{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.atanh(x)
atanh(x)
wrenfold.sym.compare(a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) int#

Determine relative ordering of two scalar-valued expressions. Note that this is not a mathematical ordering. Expressions are first ordered by their expression type, and then by the contents of the underlying concrete expressions. For non-leaf expressions (for instance addition or multiplication), a lexicographical ordering of the children is used to determine relative order.

Parameters:
  • a – The first expression.

  • b – The second expression.

Returns:

  • -1 if a belongs before b.

  • 0 if a is identical to b.

  • +1 if a belongs after b.

Examples

>>> x, y = sym.symbols('x, y')
>>> sym.compare(x, y)
-1
>>> sym.compare(y, x)
1
>>> sym.compare(5, 8)
-1
>>> sym.compare(sym.sin(x), sym.cos(x))
1
wrenfold.sym.cos(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The cosine function \(\cos{x}\).

Parameters:

arg – Argument in radians.

Examples

>>> x = sym.symbols('x')
>>> sym.cos(x)
cos(x)
>>> sym.cos(sym.pi)
-1
wrenfold.sym.cosh(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The hyperbolic cosine function \(\cosh{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.cosh(x)
cosh(x)
>>> sym.cosh(x * sp.I)
cos(x)
wrenfold.sym.derivative(function: wrenfold.sym.Expr, arg: wrenfold.sym.Expr, order: int = 1) wrenfold.sym.Expr#

Create a deferred derivative expression. This expression type is used to represent the derivatives of abstract symbolic functions.

Parameters:
  • function – Function to be differentiated.

  • arg – Argument with respect to which the derivative is taken.

  • order – The order of the derivative.

Examples

>>> x, y = sym.symbols('x, y')
>>> sym.derivative(x * x, x)
Derivative(x**2, x)
>>> f = sym.Function('f')
>>> f(x, y).diff(x)
Derivative(f(x, y), x)
Raises:
wrenfold.sym.det(m: wrenfold.sym.MatrixExpr) wrenfold.sym.Expr#

Compute the determinant of the matrix. For 2x2 and 3x3 matrices, a hardcoded formula is employed. For sizes 4x4 and above, the matrix is first decomposed via full-pivoting LU decomposition.

Caution

When computing the LU decomposition, the pivot selection step cannot know apriori which symbolic expressions might evaluate to zero at runtime. As a result, the decomposition ordering could produce NaN values at runtime when numerical values are substituted into this expression.

Returns:

The matrix determinant as a scalar-valued expression.

Raises:

wrenfold.sym.DimensionError – If the matrix is not square.

Examples

>>> x = sym.symbols('x')
>>> m = sym.matrix([[sym.cos(x), -sym.sin(x)], [sym.sin(x), sym.cos(x)]])
>>> m.det()
cos(x)**2 + sin(x)**2

References

wrenfold.sym.diag(*args, **kwargs)#

Overloaded function.

  1. diag(values: List[wrenfold.sym.MatrixExpr]) -> wrenfold.sym.MatrixExpr

Diagonally stack the provided matrices. Off-diagonal blocks are filled with zeroes.

Raises:

wrenfold.sym.DimensionError – If the input is empty.

Examples

>>> x, y, z = sym.symbols('x, y, z')
>>> m = sym.matrix([[x, 0], [y*z, 5]])
>>> sym.diagonal([m, sym.eye(2)])
[[x, 0, 0, 0], [y*z, 5, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
  1. diag(values: List[wrenfold.sym.Expr]) -> wrenfold.sym.MatrixExpr

Overload of wrenfold.sym.diag() that accepts a list of scalars.

wrenfold.sym.distribute(expr: wrenfold.sym.Expr | wrenfold.sym.MatrixExpr | wrenfold.sym.CompoundExpr | wrenfold.sym.BooleanExpr) wrenfold.sym.Expr | wrenfold.sym.MatrixExpr | wrenfold.sym.CompoundExpr | wrenfold.sym.BooleanExpr#

Expand the mathematical expression. distribute will recursively traverse the expression tree and multiply out any product of additions and subtractions. For example:

\[\left(x + y\right)\cdot(4 - y) \rightarrow 4 \cdot x + 4 \cdot y - x \cdot y - y^{2}\]

Powers of the form \(f\left(x\right)^{\frac{n}{2}}\) where \(n\) is an integer are also expanded:

\[\left(x + 2\right)^{\frac{3}{2}} \rightarrow x \cdot \left(x + 2\right)^{\frac{1}{2}} + 2 \cdot \left(x + 2\right)^{\frac{1}{2}}\]
Returns:

The input expression after expansion.

Examples

>>> x, y = sym.symbols('x, y')
>>> f = (x - 2) * (y + x) * (y - 3)
>>> f.distribute()
6*x + 6*y - 5*x*y + x**2*y + x*y**2 - 3*x**2 - 2*y**2
wrenfold.sym.eliminate_subexpressions(*args, **kwargs)#

Overloaded function.

  1. eliminate_subexpressions(expr: wrenfold.sym.Expr, make_variable: Optional[Callable[[int], wrenfold.sym.Expr]] = None, min_occurrences: int = 2) -> Tuple[wrenfold.sym.Expr, List[Tuple[wrenfold.sym.Expr, wrenfold.sym.Expr]]]

Extract common subexpressions from a scalar-valued expression. The expression tree is traversed and unique expressions are counted. Those that appear min_occurrences or more times are replaced with a variable.

This is not the same algorithm used during code-generation. Rather, it is a simplified version that pulls out atomic expressions. Additions and multiplications will not be broken down into smaller pieces in order to reduce the operation count. The intended use case is to allow a human to more easily inspect a complex nested expression by breaking it into pieces.

Parameters:
  • expr – The expression to operate on.

  • make_variable – A callable that accepts an integer indicating the index of the next variable. It should return an appropriately named variable expression. By default, the names v0, v1, ..., v{N} will be used.

  • min_occurrences – The number of times an expression must appear as part of a unique parent in order to be extracted.

Examples

>>> x, y = sym.symbols('x, y')
>>> f = sym.cos(x * y) - sym.sin(x * y) + 5 * sym.abs(sym.cos(x * y))
>>> g, replacements = sym.eliminate_subexpressions(f)
>>> replacements
[(v0, x*y), (v1, cos(v0))]
>>> g
v1 + 5*abs(v1) - sin(v0)
  1. eliminate_subexpressions(expr: wrenfold.sym.MatrixExpr, make_variable: Optional[Callable[[int], wrenfold.sym.Expr]] = None, min_occurences: int = 2) -> Tuple[wrenfold.sym.MatrixExpr, List[Tuple[wrenfold.sym.Expr, wrenfold.sym.Expr]]]

Matrix-valued overload.

wrenfold.sym.eq(a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) wrenfold.sym.BooleanExpr#

Boolean-valued relational expression \(a = b\), or == operator.

Examples

>>> sym.eq(2, 5)
False
>>> x, y = sym.symbols('x, y')
>>> sym.eq(3*x, y/2)
3*x == y/2
wrenfold.sym.eye(rows: int, cols: int | None = None) wrenfold.sym.MatrixExpr#

Create an identity matrix.

Parameters:
  • rows – Number of rows in the resulting matrix.

  • cols – Number of columns. By default this will match the number of rows.

Raises:

wrenfold.sym.DimensionError – If the dimensions are non-positive.

wrenfold.sym.float(value: float) wrenfold.sym.Expr#

Create a constant expression from a float.

Tip

Typically you do not need to explicitly call this method, since python floats involved in mathematical operations will automatically be promoted to sym.Expr:

y = x + 2.87 # Equivalent to: y = x + sym.float(2.87)
Parameters:

value – A python float.

Returns:

  • If the argument is infinite, a complex_infinity expression.

  • If the argument is nan, an undefined expression.

  • Otherwise, a float_constant expression.

wrenfold.sym.floor(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The floor function, sometimes written as \(\lfloor x \rfloor\) or \(\text{floor}\left(x\right)\). This function returns the largest integer such that \(\lfloor x \rfloor \le x\).

Returns:

  • If the input can be immediately evaluated, an integer constant.

  • Otherwise, a function expression.

Examples

>>> sym.floor(6.7)
6
>>> sym.floor(-3.1)
-4
>>> sym.floor(sym.rational(-5, 40))
-2
>>> x = sym.symbols('x')
>>> sym.floor(x)
floor(x)
wrenfold.sym.full_piv_lu(m: wrenfold.sym.MatrixExpr) Tuple[wrenfold.sym.MatrixExpr, wrenfold.sym.MatrixExpr, wrenfold.sym.MatrixExpr, wrenfold.sym.MatrixExpr]#

Factorize a matrix using complete pivoting LU decomposition.

wrenfold.sym.ge(a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) wrenfold.sym.BooleanExpr#

Boolean-valued relational expression \(a \ge b\), or >= operator. a >= b will be automatically canonicalized to b <= a.

Examples

>>> sym.ge(2, 2)
True
>>> x, y = sym.symbols('x, y')
>>> sym.ge(x, y)
y <= x
wrenfold.sym.get_variables(expr: wrenfold.sym.Expr) List[wf::variable]#

Retrieve all concrete variable expressions from a symbolic expression tree, and return them in a list.

Parameters:

expr – A scalar-valued expression.

Returns:

A list of wrenfold.sym.Variable (concrete variable expressions).

Examples

>>> x, y, z = sym.symbols('x, y, z')
>>> sym.get_variables(x**2 + y * 3 - sym.cos(z))
[x, y, z]
>>> sym.get_variables(x * 3)
[x]
>>> vs = sym.get_variables(sym.cos(x * y))
>>> type(vs[0])
wrenfold.sym.Variable
wrenfold.sym.gt(a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) wrenfold.sym.BooleanExpr#

Boolean-valued relational expression \(a \gt b\), or > operator. a > b will be automatically canonicalized to b < a.

Examples

>>> sym.gt(2.12, 2)
True
>>> x, y = sym.symbols('x, y')
>>> sym.gt(x, y)
y < x
wrenfold.sym.hstack(values: List[wrenfold.sym.MatrixExpr]) wrenfold.sym.MatrixExpr#

Horizontally (joining rows) stack the provided matrices. Number of rows must be the same for every input.

Raises:

wrenfold.sym.DimensionError – If there is a dimension mismatch, or the input is empty.

wrenfold.sym.integer(value: int) wrenfold.sym.Expr#

Create a constant expression from an integer.

Tip

Typically you do not need to explicitly call this method, since python integers involved in mathematical operations will automatically be promoted to sym.Expr:

y = x + 3 # Equivalent to: y = x + sym.integer(3)
Parameters:

value – A python integer.

Returns:

An integer_constant expression representing the argument.

Raises:

TypeError – If the input argument exceeds the range of a signed 64-bit integer.

wrenfold.sym.iverson(arg: wrenfold.sym.BooleanExpr) wrenfold.sym.Expr#

Cast a boolean expression to an integer scalar expression. The iverson bracket of boolean-valued argument \(P\) is defined as:

\[\begin{split}\text{iverson}\left(P\right) = \begin{cases} 1 & P = \text{true} \\ 0 & P = \text{false} \end{cases}\end{split}\]

The iverson bracket can be used to convert sym.BooleanExpr into sym.Expr.

Returns:

  • Boolean constants sym.true and sym.false are converted to one and zero directly.

  • Otherwise, an iverson_bracket expression is returned.

Examples

>>> sym.iverson(sym.integer(1) < 3)
1
wrenfold.sym.jacobian(functions: List[wrenfold.sym.Expr] | wrenfold.sym.MatrixExpr, vars: List[wrenfold.sym.Expr] | wrenfold.sym.MatrixExpr, use_abstract: bool = False) wrenfold.sym.MatrixExpr#

Compute the Jacobian of a vector-valued function with respect to multiple variables.

Given functions of length N and vars of length M, this method produces an (N, M) shaped matrix where element [i, j] is the partial derivative of functions[i] taken with respect to vars[j].

Parameters:
  • functions – An iterable of scalar-valued expressions to differentiate.

  • vars – An iterable of variable or compound_expression_element expressions.

  • use_abstract – See wrenfold.sym.Expr.diff().

Returns:

The Jacobian matrix of shape (N, M).

Raises:

sym.DimensionError – If the dimensions of functions or vars are invalid.

Examples

>>> x, y = sym.symbols('x, y')
>>> J = sym.jacobian([x + 1, sym.sin(y*x), x*y**2], [x, y])
>>> J.shape
(3, 2)
>>> J
[[1, 0], [y*cos(x*y), x*cos(x*y)], [y**2, 2*x*y]]

References

wrenfold.sym.le(a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) wrenfold.sym.BooleanExpr#

Boolean-valued relational expression \(a \le b\), or <= operator.

Examples

>>> sym.le(1, sym.rational(3, 2))
True
>>> x, y = sym.symbols('x, y')
>>> sym.le(x, y)
x <= y
wrenfold.sym.log(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The natural logarithm \(\ln{x}\).

Parameters:

arg – Argument to the logarithm.

Examples

>>> x = sym.symbols('x')
>>> sym.log(x + 3)
log(x + 3)
>>> sym.log(sym.E)
1
>>> sym.log(1)
0
wrenfold.sym.lt(a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) wrenfold.sym.BooleanExpr#

Boolean-valued relational expression \(a \lt b\), or < operator.

Examples

>>> sym.lt(2, 3)
True
>>> x, y = sym.symbols('x, y')
>>> sym.lt(x, y)
x < y
wrenfold.sym.matrix(rows: Iterable) wrenfold.sym.MatrixExpr#

Construct a matrix from an iterator over rows. Inputs are vertically concatenated to create a matrix expression.

Parameters:

rows – Either Iterable[sym.Expr] or Iterable[Iterable[sym.Expr]].

Tip

If the input is an iterable of expressions, the result will have column-vector shape.

Returns:

  • A matrix of expressions.

Raises:

wrenfold.sym.DimensionError – If the input is empty, or the number of columns is inconsistent between rows.

Examples

>>> sym.matrix([1,2,3])
[[1], [2], [3]]
>>> sym.matrix([(1,2,3), (x, y, z)])
[[1, 2, 3], [x, y, z]]
>>> def yield_rows():
>>>   yield sym.matrix([sym.pi, x, 0]).T
>>>   yield sym.matrix([-2, y**2, sym.cos(x)]).T
>>> sym.matrix(yield-rows())
[[pi, x, 0], [-2, y**2, cos(x)]]
wrenfold.sym.matrix_of_symbols(prefix: str, rows: int, cols: int) wrenfold.sym.MatrixExpr#

Construct a matrix of variable expressions with the provided prefix.

Parameters:
  • prefix – String prefix for variable names. Variables will be named {prefix}_{row}_{col}.

  • rows – Number of rows.

  • cols – Number of cols.

Returns:

A (rows, cols) shaped matrix filled with variable expressions.

Raises:

wrenfold.sym.DimensionError – If the dimensions are non-positive.

wrenfold.sym.max(a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) wrenfold.sym.Expr#

The maximum of two scalar values \(\text{max}\left(a, b\right)\), defined as:

\[\begin{split}\text{max}\left(a, b\right) = \begin{cases} b & a \lt b \\ a & a \ge b \end{cases}\end{split}\]
Returns:

  • If \(a \lt b\) can be immediately evaluated, the larger of a and b will be returned.

  • Otherwise, a sym.where expression.

Examples

>>> x, y = sym.symbols('x, y')
>>> sym.max(x, y)
where(x < y, y, x)
>>> sym.max(2, 3)
3
wrenfold.sym.min(a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) wrenfold.sym.Expr#

The minimum of two scalar values \(\text{min}\left(a, b\right)\), defined as:

\[\begin{split}\text{min}\left(a, b\right) = \begin{cases} b & b \lt a \\ a & a \ge b \end{cases}\end{split}\]
Returns:

  • If \(a \lt b\) can be immediately evaluated, the smaller of a and b will be returned.

  • Otherwise, a sym.where expression.

Examples

>>> x, y = sym.symbols('x, y')
>>> sym.min(x, y)
where(y < x, y, x)
>>> sym.min(sym.rational(2, 3), sym.rational(3, 4))
2/3
wrenfold.sym.multiplication(args: List[wrenfold.sym.Expr]) wrenfold.sym.Expr#

Construct multiplication expression from provided operands.

wrenfold.sym.pow(base: wrenfold.sym.Expr, exp: wrenfold.sym.Expr) wrenfold.sym.Expr#

Construct a power expression: \(\text{pow}\left(x, y\right) \rightarrow x^y\).

pow will attempt to apply simplifications where possible. Some common cases include:

  • The inputs are numerical values and can be evaluated immediately.

  • Various undefined forms: \(b^{\tilde{\infty}}\), \({\tilde{\infty}}^0\), \(0^0\).

  • Distribution of integer powers: \(\left(x \cdot y\right)^n \rightarrow x^n \cdot y^n\)

  • Collapsing of powers, when appropriate: \(\left(\sqrt{x}\right)^2 \rightarrow x\)

  • Interactions with complex infinity: \(\tilde{\infty}^n \rightarrow \tilde{\infty}\), \(\tilde{\infty}^{-n} \rightarrow 0\), \(0^{-n} \rightarrow \tilde{\infty}\).

Parameters:
  • base – Base of the power.

  • exp – Exponent of the power.

Returns:

A symbolic expresssion corresponding to base ** exp. The expression need not have underlying type power, as a simplification may have occurred.

Examples

>>> sym.pow(3, 2)
9
>>> sym.pow(24, sym.rational(1, 2))
2*6**(1/2)
>>> sym.pow(0, -1)
nan
>>> sym.pow(sym.zoo, -1)
0
>>> x, w = sym.symbols('x, w')
>>> sym.pow(x * w, 2)
x**2*w**2
>>> sym.pow(sym.sqrt(x), 2)
x
>>> sym.sqrt(sym.pow(x, 2))
(x**2)**(1/2)
wrenfold.sym.rational(n: int, d: int) wrenfold.sym.Expr#

Create a constant expression from the quotient of two integers. The rational will be simplified by dividing out the greatest common divisor.

Parameters:
  • n – The numerator.

  • d – The denominator.

Returns:

  • If the quotient simplifies to an integer, an integer_constant expression.

  • Otherwise, a rational_constant expression.

Raises:

wrenfold.exceptions.ArithmeticError – If d is zero.

Examples

>>> sym.rational(5, 10) # Equivalent to: sym.integer(5) / 10
1/2
>>> sym.rational(-2, 7)
-2/7
wrenfold.sym.row_vector(*args) wrenfold.sym.MatrixExpr#

Create a row-vector from the provided arguments.

Parameters:

args – The elements of the vector.

Returns:

A (1, M) row vector, where M is the number of args.

Raises:

wrenfold.sym.DimensionError – If no arguments are provided.

Examples

>>> x, y = sym.symbols('x, y')
>>> sym.row_vector(x * 2, 0, y + 3)
[[2*x, 0, 3 + y]]
wrenfold.sym.sign(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The sign/signum function \(\text{sign}\left(x\right)\), defined as:

\[\begin{split}\text{sign}\left(x\right) = \begin{cases} -1 & x \lt 0 \\ 0 & x = 0 \\ 1 & x \gt 0 \end{cases}\end{split}\]

Tip

Like other functions for which no finite derivative exists, by default wrenfold will assume \(\frac{\partial}{\partial x}\text{sign}\left(x\right) = 0\). See wrenfold.sym.Expr.diff() for alternative behavior.

Caution

Some floating-point implementations of sign have the behavior sign(+0.0) = 1 and sign(-0.0) = -1. The symbolic sign function in wrenfold produces zero for all numerical zero-valued inputs.

Returns:

[-1, 0, 1]. * Otherwise, a function expression.

Return type:

  • If the input can be immediately evaluated, one of

Examples

>>> x = sym.symbols('x')
>>> sym.sign(x)
sign(x)
>>> sym.sign(x).diff(x)
0
>>> sym.sign(-0.78231)
-1
wrenfold.sym.sin(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The sine function \(\sin{x}\).

Parameters:

arg – Argument in radians.

Examples

>>> x = sym.symbols('x')
>>> sym.sin(x)
sin(x)
>>> sym.sin(0)
0
wrenfold.sym.sinh(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The hyperbolic sine function \(\sinh{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.sinh(x)
sinh(x)
>>> sym.sinh(x * sp.I)
I*sin(x)
wrenfold.sym.sqrt(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The square root function \(\sqrt{x}\). This is an alias for sym.pow(x, sym.rational(1, 2)).

wrenfold.sym.subs(*args, **kwargs)#

Overloaded function.

  1. subs(expr: Union[wrenfold.sym.Expr, wrenfold.sym.MatrixExpr, wrenfold.sym.CompoundExpr, wrenfold.sym.BooleanExpr], pairs: List[Union[Tuple[wrenfold.sym.Expr, wrenfold.sym.Expr], Tuple[wrenfold.sym.BooleanExpr, wrenfold.sym.BooleanExpr]]]) -> Union[wrenfold.sym.Expr, wrenfold.sym.MatrixExpr, wrenfold.sym.CompoundExpr, wrenfold.sym.BooleanExpr]

Traverse the expression tree and replace target expressions with corresponding substitutions. The list of replacements is executed in order, such that substitutions that appear later in the list of (target, replacement) pairs may leverage the result of earlier ones.

Parameters:

pairs – A list of tuples. Each tuple contains a (target, replacement) pair, where the target is the expression to find and the replacement is the expression to substitute in its place. The pairs may be scalar-valued or boolean-valued expressions.

Returns:

The input expression after performing replacements.

Examples

>>> x, y = sym.symbols('x, y')
>>> sym.cos(x).subs([(x, y*2), (y, sym.pi)])
1
>>> (sym.pow(x, 2) * y).subs(x * y, 3)
3*x
>>> (x + 2*y - 5).subs(x + 2*y, y)
-5 + y
  1. subs(expr: Union[wrenfold.sym.Expr, wrenfold.sym.MatrixExpr, wrenfold.sym.CompoundExpr, wrenfold.sym.BooleanExpr], target: wrenfold.sym.Expr, replacement: wrenfold.sym.Expr) -> Union[wrenfold.sym.Expr, wrenfold.sym.MatrixExpr, wrenfold.sym.CompoundExpr, wrenfold.sym.BooleanExpr]

Overload of subs that performs a single scalar-valued substitution.

  1. subs(expr: Union[wrenfold.sym.Expr, wrenfold.sym.MatrixExpr, wrenfold.sym.CompoundExpr, wrenfold.sym.BooleanExpr], target: wrenfold.sym.BooleanExpr, replacement: wrenfold.sym.BooleanExpr) -> Union[wrenfold.sym.Expr, wrenfold.sym.MatrixExpr, wrenfold.sym.CompoundExpr, wrenfold.sym.BooleanExpr]

Overload of subs that performs a single boolean-valued substitution.

wrenfold.sym.substitution(input: wrenfold.sym.Expr, target: wrenfold.sym.Expr, replacement: wrenfold.sym.Expr) wrenfold.sym.Expr#

Create a deferred substitution expression.

Parameters:
  • input – The expression that would be modified by the substitution.

  • target – The target expression being replaced.

  • replacement – The substituted expression.

Examples

>>> x, y = sym.symbols('x, y')
>>> f = sym.substitution(x**2 + y, y, sym.cos(x))
>>> print(f)
Subs(y + x**2, y, cos(x))
>>> f.args
(y + x**2, y, cos(x))
Raises:

wrenfold.exceptions.TypeError – If target is a numeric constant.

wrenfold.sym.symbols(names: str | Iterable, real: bool = False, positive: bool = False, nonnegative: bool = False, complex: bool = False) wrenfold.sym.Expr | list#

Create instances of variable expressions with the provided names. The argument names may be either:

  1. A single string containing multiple names separated by whitespace or commas. The string will be split into parts - each of which becomes a variable. If the string contains a single element, a single sym.Expr will be returned.

  2. An iterable of strings. In this case, each string will be processed per the previous rule and a list of sym.Expr will be returned. This rule is applied recursively, such that Iterable[Iterable[str]] will produce return type List[List[sym.Expr]].

Parameters:
  • names – String or nested iterable of strings indicating the variable names.

  • real – Indicate the symbols are real-valued.

  • positive – Indicate the symbols are positive and real-valued.

  • nonnegative – Indicate the symbols are non-negative and real-valued.

  • complex – Indicate the symbols are complex.

Returns:

A variable expression, or a nested iterable of variable expressions.

Examples

>>> sym.symbols('x') # Creating a single symbol.
x
>>> sym.symbols('x, y') # Multiple symbols from a single string.
[x, y]
>>> sym.symbols([('w', 'x'), ('y', 'z')]) # Nested iterable of symbols.
[[w, x], [y, z]]

Caution

wrenfold does not yet support the range-syntax implemented in sympy, so evaluating sym.symbols('x:5') will not produce the expected result.

wrenfold.sym.tan(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The tangent function \(\tan{x}\).

Parameters:

arg – Argument in radians.

Examples

>>> x = sym.symbols('x')
>>> sym.tan(x)
tan(x)
>>> sym.tan(sym.pi/2)
zoo
wrenfold.sym.tanh(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

The hyperbolic tangent function \(\tanh{x}\).

Examples

>>> x = sym.symbols('x')
>>> sym.tanh(x)
tanh(x)
>>> sym.tanh(x * sp.I)
I*tan(x)
wrenfold.sym.unevaluated(arg: wrenfold.sym.Expr) wrenfold.sym.Expr#

Wrap a scalar-valued expression to prevent automatic simplifications/combinations in downstream operations. This is similar in intent to SymPy’s UnevaluatedExpr.

Parameters:

arg – Scalar-valued expression to wrap.

Examples

>>> x, y = sym.symbols('x, y')
>>> f = sym.unevaluated(x * y) * y
>>> f # Products are not combined automatically.
y*(x*y)
>>> f.diff(y) # Derivatives retain the parentheses.
y*(x) + (x*y)
wrenfold.sym.unique_symbols(count: int, real: bool = False, positive: bool = False, nonnegative: bool = False, complex: bool = False) wrenfold.sym.Expr | list#

Create instances of variable expressions with unique identities that can never be accidentally re-used. This is useful if you need temporary variables that will later be replaced by substitution, and want to be certain that their names do not conflict with other symbols.

Parameters:

count – Number of symbols to create. If one, a single expression is returned. If greater than one, a list of expressions is returned.

Examples

>>> sym.unique_symbols(count=2)
[$u_1, $u_2]
>>> sym.unique_symbols(count=1)
$u_3
wrenfold.sym.vec(m: wrenfold.sym.MatrixExpr) wrenfold.sym.MatrixExpr#

Vectorize matrix in column-major order.

Parameters:

m – Matrix to flatten.

Returns:

New column-vector matrix formed by vertically stacking the columns of m.

wrenfold.sym.vector(*args) wrenfold.sym.MatrixExpr#

Create a column-vector from the provided arguments.

Parameters:

args – The elements of the vector.

Returns:

A (N, 1) column vector, where N is the number of args.

Raises:

wrenfold.sym.DimensionError – If no arguments are provided.

Examples

>>> x, y = sym.symbols('x, y')
>>> sym.vector(x * 2, 0, y + 3)
[[2*x], [0], [3 + y]]
wrenfold.sym.vstack(values: List[wrenfold.sym.MatrixExpr]) wrenfold.sym.MatrixExpr#

Vertically (joining columns) stack the provided matrices. Number of columns must be the same for every input.

Raises:

wrenfold.sym.DimensionError – If there is a dimension mismatch, or the input is empty.

wrenfold.sym.where(*args, **kwargs)#

Overloaded function.

  1. where(c: wrenfold.sym.BooleanExpr, a: wrenfold.sym.Expr, b: wrenfold.sym.Expr) -> wrenfold.sym.Expr

where(c, a, b) will select between either a or b, depending on the boolean-valued expression c. When c is true, a is returned, otherwise b is returned:

\[\begin{split}\text{where}\left(c, a, b\right) = \begin{cases} a & c = \text{true} \\ b & c = \text{false} \end{cases}\end{split}\]

In generated code, conditional expressions are converted to if-else statements.

Tip

When differentiated, the discontinuity introduced by the conditional is ignored. The derivatives of a and b are computed, and a new conditional statement is formed.

Parameters:
  • c – The boolean-valued condition used to switch between values.

  • a – Returned if c is true.

  • b – Returned if c is false.

Returns:

  • If the truthiness of c can be immediately evaluated, a or b is returned directly.

  • Otherwise, a conditional expression.

Examples

>>> x, y = sym.symbols('x, y')
>>> sym.where(x > y, sym.cos(x), sym.sin(y))
where(y < x, cos(x), sin(y))
>>> sym.where(x > y, sym.pi * x, 0).subs(x, 3).subs(y, 2)
3*pi
>>> sym.where(x > y, 4*x**3, 2*y).diff(x)
where(y < x, 12*x**2, 0)
  1. where(c: wrenfold.sym.BooleanExpr, a: wrenfold.sym.MatrixExpr, b: wrenfold.sym.MatrixExpr) -> wrenfold.sym.MatrixExpr

Overload of wrenfold.sym.where() for matrix arguments. Accepts two identically-shaped matrices a, b and a boolean-valued expression c.

Parameters:
  • c – Boolean-valued expression.

  • a – Matrix whose elements are selected when c is True.

  • b – Matrix whose elements are selected when c is False.

Returns:

A new matrix where element [i, j] evaluates to sym.where(c, a[i, j], b[i, j]).

Raises:

wrenfold.sym.DimensionError – If the dimensions of a and b do not match.

wrenfold.sym.zeros(rows: int, cols: int) wrenfold.sym.MatrixExpr#

Create a matrix of zeros with the specified shape.

Parameters:
  • rows – Number of rows. Must be positive.

  • cols – Number of cols. Must be positive.

Returns:

A (rows, cols) matrix of zeroes.

Raises:

wrenfold.sym.DimensionError – If the dimensions are non-positive.

Examples

>>> sym.zeros(2, 3)
[[0, 0, 0], [0, 0, 0]]
class wrenfold.sym.BooleanExpr#

A boolean-valued symbolic expression.

__bool__(self: wrenfold.sym.BooleanExpr) bool#

Coerce expression to boolean.

__eq__(self: wrenfold.sym.BooleanExpr, other: wrenfold.sym.BooleanExpr) bool#

Check for strict equality. This is not the same as mathematical equivalence.

__hash__(self: wrenfold.sym.BooleanExpr) int#

Compute hash.

__init__(*args, **kwargs)#
property args#

Arguments of self as a tuple.

expression_tree_str(self: wrenfold.sym.BooleanExpr) str#

See wrenfold.sym.Expr.expression_tree_str().

is_identical_to(self: wrenfold.sym.BooleanExpr, other: wrenfold.sym.BooleanExpr) bool#

Check for strict equality. This is not the same as mathematical equivalence.

subs(*args, **kwargs)#

Overloaded function.

  1. subs(self: wrenfold.sym.BooleanExpr, target: wf::scalar_expr, substitute: wf::scalar_expr) -> wrenfold.sym.BooleanExpr

See wrenfold.sym.subs()

  1. subs(self: wrenfold.sym.BooleanExpr, target: wrenfold.sym.BooleanExpr, substitute: wrenfold.sym.BooleanExpr) -> wrenfold.sym.BooleanExpr

See wrenfold.sym.subs()

  1. subs(self: wrenfold.sym.BooleanExpr, pairs: List[Union[Tuple[wf::scalar_expr, wf::scalar_expr], Tuple[wrenfold.sym.BooleanExpr, wrenfold.sym.BooleanExpr]]]) -> wrenfold.sym.BooleanExpr

See wrenfold.sym.subs()

property type_name#

Retrieve the name of the underlying C++ expression type. See wrenfold.sym.Expr.type_name().

class wrenfold.sym.CompoundExpr#

A compound expression is an instance of an aggregate type with members that have been initialized from symbolic expressions. It is used to represent a user-provided struct in the symbolic expression tree. This enables a couple of functionalities:

  • User types can be passed as input and output arguments from generated functions.

  • User types can be passed as inputs and outputs from external (non-generated) functions that are invoked from within a generated function.

__bool__(self: wrenfold.sym.CompoundExpr) None#
__eq__(self: wrenfold.sym.CompoundExpr, other: wrenfold.sym.CompoundExpr) bool#

Check for strict equality. This is not the same as mathematical equivalence.

__hash__(self: wrenfold.sym.CompoundExpr) int#

Compute hash.

__init__(*args, **kwargs)#
is_identical_to(self: wrenfold.sym.CompoundExpr, other: wrenfold.sym.CompoundExpr) bool#

Check for strict equality. This is not the same as mathematical equivalence.

property type_name#

Retrieve the name of the underlying C++ expression type. See wrenfold.sym.Expr.type_name().

class wrenfold.sym.Expr#

A scalar-valued symbolic expression.

__abs__(self: wrenfold.sym.Expr) wrenfold.sym.Expr#
__add__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) wrenfold.sym.Expr#
__bool__(self: wrenfold.sym.Expr) None#

Coerce expression to bool.

__eq__(self: wrenfold.sym.Expr, other: wrenfold.sym.Expr) bool#

Check for strict equality. This is not the same as mathematical equivalence.

__ge__(*args, **kwargs)#

Overloaded function.

  1. __ge__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) -> wrenfold.sym.BooleanExpr

  2. __ge__(self: wrenfold.sym.Expr, arg0: int) -> wrenfold.sym.BooleanExpr

  3. __ge__(self: wrenfold.sym.Expr, arg0: float) -> wrenfold.sym.BooleanExpr

__gt__(*args, **kwargs)#

Overloaded function.

  1. __gt__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) -> wrenfold.sym.BooleanExpr

  2. __gt__(self: wrenfold.sym.Expr, arg0: int) -> wrenfold.sym.BooleanExpr

  3. __gt__(self: wrenfold.sym.Expr, arg0: float) -> wrenfold.sym.BooleanExpr

__hash__(self: wrenfold.sym.Expr) int#

Compute hash.

__init__(*args, **kwargs)#

Overloaded function.

  1. __init__(self: wrenfold.sym.Expr, arg0: int) -> None

  2. __init__(self: wrenfold.sym.Expr, arg0: float) -> None

__le__(*args, **kwargs)#

Overloaded function.

  1. __le__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) -> wrenfold.sym.BooleanExpr

  2. __le__(self: wrenfold.sym.Expr, arg0: int) -> wrenfold.sym.BooleanExpr

  3. __le__(self: wrenfold.sym.Expr, arg0: float) -> wrenfold.sym.BooleanExpr

__lt__(*args, **kwargs)#

Overloaded function.

  1. __lt__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) -> wrenfold.sym.BooleanExpr

  2. __lt__(self: wrenfold.sym.Expr, arg0: int) -> wrenfold.sym.BooleanExpr

  3. __lt__(self: wrenfold.sym.Expr, arg0: float) -> wrenfold.sym.BooleanExpr

__mul__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) wrenfold.sym.Expr#
__neg__(self: wrenfold.sym.Expr) wrenfold.sym.Expr#
__pow__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) wrenfold.sym.Expr#

other_a

__radd__(*args, **kwargs)#

Overloaded function.

  1. __radd__(self: wrenfold.sym.Expr, arg0: int) -> wrenfold.sym.Expr

  2. __radd__(self: wrenfold.sym.Expr, arg0: float) -> wrenfold.sym.Expr

__rmul__(*args, **kwargs)#

Overloaded function.

  1. __rmul__(self: wrenfold.sym.Expr, arg0: int) -> wrenfold.sym.Expr

  2. __rmul__(self: wrenfold.sym.Expr, arg0: float) -> wrenfold.sym.Expr

__rpow__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) wrenfold.sym.Expr#

other_a

__rsub__(*args, **kwargs)#

Overloaded function.

  1. __rsub__(self: wrenfold.sym.Expr, arg0: int) -> wrenfold.sym.Expr

  2. __rsub__(self: wrenfold.sym.Expr, arg0: float) -> wrenfold.sym.Expr

__rtruediv__(*args, **kwargs)#

Overloaded function.

  1. __rtruediv__(self: wrenfold.sym.Expr, arg0: int) -> wrenfold.sym.Expr

  2. __rtruediv__(self: wrenfold.sym.Expr, arg0: float) -> wrenfold.sym.Expr

__sub__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) wrenfold.sym.Expr#
__truediv__(self: wrenfold.sym.Expr, arg0: wrenfold.sym.Expr) wrenfold.sym.Expr#
property args#

Arguments of self as a tuple.

collect(*args, **kwargs)#

Overloaded function.

  1. collect(self: wrenfold.sym.Expr, term: wrenfold.sym.Expr) -> wrenfold.sym.Expr

Overload of collect that accepts a single variable.

  1. collect(self: wrenfold.sym.Expr, terms: List[wrenfold.sym.Expr]) -> wrenfold.sym.Expr

Combine coefficients of the specified expression(s) (and powers thereof) into additive sums. Given a target expression \(x\), collect traverse the expression tree and identifies terms that appear in products with the target. Terms multiplied by matching powers of \(x\) are summed into a new combined coefficient. For example:

A single power of \(x\) exists in the input:

\[x\cdot\pi + x \cdot y + x \rightarrow x\cdot\left(\pi + y + 1\right)\]

Both \(x\) and \(x^2\) exist in the input:

\[x^2\cdot\sin{y} - x\cdot 5 + x^2 \cdot 4 + x\cdot\pi \rightarrow x\cdot\left(-5 + \pi\right) + x^2\left(4 + \sin{y}\right)\]

When multiple input variables are specified, collect will group recursively starting with the first variable, then proceeding to the second. For example, if we take the expression:

\[x^2 \cdot y \cdot \cos{w} + 3 \cdot y \cdot x^2 + x \cdot y^2 + x \cdot y^2 \cdot \pi - 5 \cdot x^2 \cdot y^2 + x \cdot w\]

And collect it with respect to [x, y], we obtain:

\[x^2 \cdot \left(y \cdot \left(3 + \cos{w}\right) - 5 \cdot y^2\right) + x \cdot \left(w + y^2 \cdot \left(1 + \pi\right)\right)\]
Parameters:

terms – Sequence of expressions whose coefficients we will collect.

Returns:

The collected expression.

Examples

>>> x, y, w = sym.symbols('x, y, w')
>>> f = x**2*y*sym.cos(w) + 3*y*x**2 + x*y**2 + x*y**2*sym.pi - 5*x**2*y**2 + x*w
>>> f.collect(x)
x*(w + pi*y**2 + y**2) + x**2*(3*y + y*cos(w) - 5*y**2)
>>> f.collect([x, y])
x*(w + y**2*(1 + pi)) + x**2*(y*(3 + cos(w)) - 5*y**2)
>>> f.collect([y, x])
w*x + x**2*y*(3 + cos(w)) + y**2*(x*(1 + pi) - 5*x**2)
diff(self: wrenfold.sym.Expr, var: wrenfold.sym.Expr, order: int = 1, use_abstract: bool = False) wrenfold.sym.Expr#

Differentiate the expression with respect to the specified variable.

Parameters:
  • var – Scalar variable with respect to which the derivative is taken. Must be of type variable or compound_expression_element. Differentiation with respect to arbitrary expressions is not permitted.

  • order – Order of the derivative, where 1 is the first derivative.

  • use_abstract – Governs behavior when a non-differentiable expression is encountered. If false (the default), the value zero is substituted. This is not mathematically accurate, but is often more computationally useful than introducing an expression that would produce nan or inf when evaluated. If use_abstract=True, an abstract derivative expression is inserted instead.

Returns:

Derivative of self taken order times with respect to var.

Examples

Taking the derivative with respect to a variable:

>>> x, y = sym.symbols('x, y')
>>> f = x * sym.sin(x * y) + 3
>>> f.diff(x)
x*y*cos(x*y) + sin(x*y)
>>> f.diff(x, order=2)
-x*y**2*sin(x*y) + 2*y*cos(x*y)
>>> f.diff(y)
x**2*cos(x*y)
distribute(self: wrenfold.sym.Expr) wrenfold.sym.Expr#

See wrenfold.sym.distribute().

eval(self: wrenfold.sym.Expr) int | float | complex | wrenfold.sym.Expr#

Evaluate the mathematical expression into a numeric value. Traverses the expression tree, converting every numeric literal and constant into a double precision float. Operations are recursively evaluated until the result is obtained.

Important

Unlike sympy.evalf, no special care is taken to preserve fixed precision. This operation will allow floating point error to propagate normally. Built-in math functions like sin or log will call their C++ STL equivalent.

Returns:

The evaluated result. Typically the result is float or complex. If the final result is not coercible to one of these, it will be returned as sym.Expr.

Examples

>>> x = sym.symbols('x')
>>> f = sym.cos(sym.pi / 3 + x)
>>> f.subs(x, sym.pi).eval()
-0.4999999999999998
>>> sym.sin(sym.pi/4 + sym.pi*sym.I/6).eval()
>>> (0.8062702490019065+0.3873909064828401j)
expression_tree_str(self: wrenfold.sym.Expr) str#

Recursively traverses the expression tree and creates a pretty-printed string describing the expression. This can be a useful representation for diffing math expression trees.

Returns:

String representation of the expression tree.

Example

>>> x, y = sym.symbols('x, y')
>>> print((x*y + 5).expression_tree_str())
Addition:
├─ Integer (5)
└─ Multiplication:
  ├─ Variable (x, unknown)
  └─ Variable (y, unknown)
is_identical_to(self: wrenfold.sym.Expr, other: wrenfold.sym.Expr) bool#

Check for strict equality. This is not the same as mathematical equivalence.

subs(*args, **kwargs)#

Overloaded function.

  1. subs(self: wrenfold.sym.Expr, pairs: List[Union[Tuple[wrenfold.sym.Expr, wrenfold.sym.Expr], Tuple[wrenfold.sym.BooleanExpr, wrenfold.sym.BooleanExpr]]]) -> wrenfold.sym.Expr

See wrenfold.sym.subs().

  1. subs(self: wrenfold.sym.Expr, target: wrenfold.sym.Expr, substitute: wrenfold.sym.Expr) -> wrenfold.sym.Expr

Overload of subs that performs a single scalar-valued substitution.

  1. subs(self: wrenfold.sym.Expr, target: wrenfold.sym.BooleanExpr, substitute: wrenfold.sym.BooleanExpr) -> wrenfold.sym.Expr

Overload of subs that performs a single boolean-valued substitution.

property type_name#

Retrieve the name of the underlying C++ expression type.

Returns:

String name of the underlying expression type.

Example

>>> x, y = sym.symbols('x, y')
>>> print(x.type_name)
Variable
>>> print((x + y).type_name)
Addition
class wrenfold.sym.Function#

A scalar-valued symbolic function. Used to construct expressions of undefined functions.

__call__(self: wrenfold.sym.Function, *args) wrenfold.sym.Expr#

Invoke the symbolic function with the provided scalar expressions, and return a new scalar expression.

__eq__(self: wrenfold.sym.Function, other: wrenfold.sym.Function) bool#

Check for strict equality. This is not the same as mathematical equivalence.

__hash__(self: wrenfold.sym.Function) int#

Compute hash.

__init__(self: wrenfold.sym.Function, name: str) None#

Declare a new symbolic function with the provided string name. Two functions with the same name are considered equivalent.

Parameters:

name – Function name.

Examples

>>> x, y = sym.symbols('x, y')
>>> f = sym.Function('f')
>>> f(x)
f(x)
>>> f(x, y ** 2).diff(x)
Derivative(f(x, y**2), x)
Raises:

wrenfold.exceptions.InvalidArgumentError – If the input string is empty.

is_identical_to(self: wrenfold.sym.Function, other: wrenfold.sym.Function) bool#

Check for strict equality. This is not the same as mathematical equivalence.

property name#

Name of the function.

class wrenfold.sym.MatrixExpr#

A matrix-valued symbolic expression.

property T#

Alias for wrenfold.sym.MatrixExpr.transpose().

__add__(self: wrenfold.sym.MatrixExpr, arg0: wrenfold.sym.MatrixExpr) wrenfold.sym.MatrixExpr#
__array__(self: wrenfold.sym.MatrixExpr, **kwargs) numpy.ndarray#

Convert to numpy array.

__bool__(self: wrenfold.sym.MatrixExpr) None#
__eq__(self: wrenfold.sym.MatrixExpr, other: wrenfold.sym.MatrixExpr) bool#

Check for strict equality. This is not the same as mathematical equivalence.

__getitem__(*args, **kwargs)#

Overloaded function.

  1. __getitem__(self: wrenfold.sym.MatrixExpr, row: int) -> Union[wrenfold.sym.Expr, wrenfold.sym.MatrixExpr]

Retrieve a row from the matrix.

  1. __getitem__(self: wrenfold.sym.MatrixExpr, row_col: Tuple[int, int]) -> wrenfold.sym.Expr

Retrieve a row and column from the matrix.

  1. __getitem__(self: wrenfold.sym.MatrixExpr, slice: slice) -> wrenfold.sym.MatrixExpr

Slice along rows.

  1. __getitem__(self: wrenfold.sym.MatrixExpr, slices: Tuple[slice, slice]) -> wrenfold.sym.MatrixExpr

Slice along rows and cols.

  1. __getitem__(self: wrenfold.sym.MatrixExpr, row_and_col_slice: Tuple[int, slice]) -> wrenfold.sym.MatrixExpr

Slice a specific row.

  1. __getitem__(self: wrenfold.sym.MatrixExpr, row_slice_and_col: Tuple[slice, int]) -> wrenfold.sym.MatrixExpr

Slice a specific column.

__hash__(self: wrenfold.sym.MatrixExpr) int#

Compute hash.

__init__(self: wrenfold.sym.MatrixExpr, rows: Iterable) None#

Construct from an iterable of values. See wrenfold.sym.matrix().

__iter__(self: wrenfold.sym.MatrixExpr) Iterator#

Iterate over rows in the matrix.

__len__(self: wrenfold.sym.MatrixExpr) int#

Number of rows in the matrix.

__mul__(*args, **kwargs)#

Overloaded function.

  1. __mul__(self: wrenfold.sym.MatrixExpr, arg0: wrenfold.sym.MatrixExpr) -> wrenfold.sym.MatrixExpr

  2. __mul__(self: wrenfold.sym.MatrixExpr, arg0: wrenfold.sym.Expr) -> wrenfold.sym.MatrixExpr

__neg__(self: wrenfold.sym.MatrixExpr) wrenfold.sym.MatrixExpr#

Element-wise negation of the matrix.

__rmul__(self: wrenfold.sym.MatrixExpr, arg0: wrenfold.sym.Expr) wrenfold.sym.MatrixExpr#
__sub__(self: wrenfold.sym.MatrixExpr, arg0: wrenfold.sym.MatrixExpr) wrenfold.sym.MatrixExpr#
__truediv__(self: wrenfold.sym.MatrixExpr, arg0: wrenfold.sym.Expr) wrenfold.sym.MatrixExpr#
col_join(self: wrenfold.sym.MatrixExpr, other: wrenfold.sym.MatrixExpr) wrenfold.sym.MatrixExpr#

Vertically stack self and other.

Parameters:

other – Matrix to stack below self.

Raises:

wrenfold.sym.DimensionError – If the number of columns does not match.

collect(*args, **kwargs)#

Overloaded function.

  1. collect(self: wrenfold.sym.MatrixExpr, var: wrenfold.sym.Expr) -> wrenfold.sym.MatrixExpr

Invokes wrenfold.sym.Expr.collect() on every element of the matrix. This overload accepts a single variable.

  1. collect(self: wrenfold.sym.MatrixExpr, var: List[wrenfold.sym.Expr]) -> wrenfold.sym.MatrixExpr

Invokes wrenfold.sym.Expr.collect() on every element of the matrix. This overload accepts a list of variables, and collects recursively in the order they are specified.

det(self: wrenfold.sym.MatrixExpr) wrenfold.sym.Expr#

Alias for wrenfold.sym.det().

diff(self: wrenfold.sym.MatrixExpr, var: wrenfold.sym.Expr, order: int = 1, use_abstract: bool = False) wrenfold.sym.MatrixExpr#

Differentiate every element of the matrix with respect to the specified variable.

See wrenfold.sym.Expr.diff() for meaning of the arguments.

Returns:

A new matrix (with the same shape as self) where each element is the derivative of the corresponding input element, taken order times with respect to var.

Examples

>>> x = sym.symbols('x')
>>> m = sym.matrix([[x, sym.sin(x)], [22, -x**2]])
>>> m.diff(x)
[[1, cos(x)], [0, -2*x]]
distribute(self: wrenfold.sym.MatrixExpr) wrenfold.sym.MatrixExpr#

Invoke wrenfold.sym.distribute() on every element of the matrix.

eval(self: wrenfold.sym.MatrixExpr) numpy.ndarray#

Invoke wrenfold.sym.Expr.eval() on every element of the matrix, and return a numpy array containing the resulting values.

expression_tree_str(self: wrenfold.sym.MatrixExpr) str#

See wrenfold.sym.Expr.expression_tree_str().

property is_empty#

True if the matrix empty (either zero rows or cols). This should only occur with empty slices.

is_identical_to(self: wrenfold.sym.MatrixExpr, other: wrenfold.sym.MatrixExpr) bool#

Check for strict equality. This is not the same as mathematical equivalence.

jacobian(self: wrenfold.sym.MatrixExpr, vars: List[wrenfold.sym.Expr] | wrenfold.sym.MatrixExpr, use_abstract: bool = False) wrenfold.sym.MatrixExpr#

See wrenfold.sym.jacobian(). Equivalent to sym.jacobian(self, vars).

norm(self: wrenfold.sym.MatrixExpr) wrenfold.sym.Expr#

The L2 norm of the matrix, or square root of wrenfold.sym.MatrixExpr.squared_norm().

reshape(*args, **kwargs)#

Overloaded function.

  1. reshape(self: wrenfold.sym.MatrixExpr, rows: int, cols: int) -> wrenfold.sym.MatrixExpr

Reshape a matrix and return a copy with the new shape. The underlying order (row-major) of elements in self is unchanged. The expressions are simply copied into a new matrix with the requested number of rows and columns. The total number of elements must remain unchanged.

Parameters:
  • rows – Number of rows in the output.

  • cols – Number of columns in the output.

Returns:

A new matrix with shape (rows, cols).

Raises:

wrenfold.sym.DimensionError – If the specified dimensions are invalid.

Examples

>>> sym.matrix([1, 2, 3, 4]).reshape(2, 2)
[[1, 2], [3, 4]]
  1. reshape(self: wrenfold.sym.MatrixExpr, shape: Tuple[int, int]) -> wrenfold.sym.MatrixExpr

Overload of reshape that accepts a (row, col) tuple.

row_join(self: wrenfold.sym.MatrixExpr, other: wrenfold.sym.MatrixExpr) wrenfold.sym.MatrixExpr#

Horizontally stack self and other.

Parameters:

other – Matrix to stack to the right of self.

Raises:

wrenfold.sym.DimensionError – If the number of rows does not match.

property shape#

Shape of the matrix in (row, col) format.

property size#

Total number of elements.

squared_norm(self: wrenfold.sym.MatrixExpr) wrenfold.sym.Expr#

The sum of squared elements of self, or the squared L2 norm.

Returns:

A scalar-valued expression.

Examples

>>> x, y = sym.symbols('x, y')
>>> m = sym.matrix([[x, y], [2, 0]])
>>> m.squared_norm()
4 + x**2 + y**2
subs(*args, **kwargs)#

Overloaded function.

  1. subs(self: wrenfold.sym.MatrixExpr, target: wrenfold.sym.Expr, substitute: wrenfold.sym.Expr) -> wrenfold.sym.MatrixExpr

Overload of subs that performs a single scalar-valued substitution.

  1. subs(self: wrenfold.sym.MatrixExpr, target: wrenfold.sym.BooleanExpr, substitute: wrenfold.sym.BooleanExpr) -> wrenfold.sym.MatrixExpr

Overload of subs that performs a single boolean-valued substitution.

  1. subs(self: wrenfold.sym.MatrixExpr, pairs: List[Union[Tuple[wrenfold.sym.Expr, wrenfold.sym.Expr], Tuple[wrenfold.sym.BooleanExpr, wrenfold.sym.BooleanExpr]]]) -> wrenfold.sym.MatrixExpr

Invoke wrenfold.sym.subs() on every element of the matrix.

to_flat_list(self: wrenfold.sym.MatrixExpr) list#

Convert to a flat list assembled in the storage order (row-major) of the matrix.

to_list(self: wrenfold.sym.MatrixExpr) list#

Convert to a list of lists.

transpose(self: wrenfold.sym.MatrixExpr) wrenfold.sym.MatrixExpr#

Transpose the matrix by swapping rows and columns. If self has dimensions (N, M), the result will be an (M, N) matrix where element [i, j] is self[j, i].

Returns:

The transposed matrix.

Examples

>>> x, y = sym.symbols('x, y')
>>> m = sym.matrix([[x, y*2], [sym.cos(x), 0]])
>>> m
[[x, 2*y], [cos(x), 0]]
>>> m.transpose()
[[x, cos(x)], [2*y, 0]]
property type_name#

Retrieve the name of the underlying C++ expression type. See wrenfold.sym.Expr.type_name().

unary_map(self: wrenfold.sym.MatrixExpr, func: Callable[[wrenfold.sym.Expr], wrenfold.sym.Expr]) wrenfold.sym.MatrixExpr#

Perform a unary map operation on self. The provided callable func is invoked on every element of the matrix (traversing in row-major order). The returned values are used to create a new matrix with the same shape as the input.

Parameters:

func – A callable that accepts and returns sym.Expr.

Returns:

The mapped matrix.

Examples

>>> x, y = sym.symbols('x, y')
>>> m = sym.matrix([[x, y], [2, sym.pi]])
>>> m.unary_map(lambda v: v * 2)
[[2*x, 2*y], [4, 2*pi]]